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Abstract--A model of a turbulent axisymmetric thermal rising in an atmosphere with altitude-dependent 
density is proposed. A numerical study of the thermal is performed for an isothermal atmosphere with 
exponentially decreasing density. The structure of the thermal corresponding to the square-root law of the 
ascent is obtained in similarity coordinates. An analytical solution is found for a wide class of the density 
variation functions and studied in detail for an inverse-square law of density diminution with height. It is 
shown that as the thermal penetrates the low-density atmospheric layers, its top edge becomes less sharp 
and the widL~ of the thermal increases. However, the self-similar coordinate of the cloud top remains 

almost constant and the square-root law of the ascent still holds. 

1. INTRODUCTION 

The free convective :flows accompanying the evolution 
of a hot buoyant cloud (thermal) in a stratified ambi- 
ence have attracted much attention over the past few 
decades. Previous experimental and theoretical studies 
have shown that when a thermal is ascending in an 
incompressible neutrally stratified medium, after some 
period the fluid motion becomes self-similar after 
which the vertical coordinate of the cloud top 
increases with time according to a 'square-root' law, 
i.e. proportionally to t 1/2 (e.g. [1, 2]). The self-similar 
stage begins after the thermal 'forgets' the initial con- 
ditions so that the characteristic length scale no longer 
exists in the flowfield. 

Many earlier studies of the thermals dealt with rela- 
tively simple models in which the volume-averaged 
characteristics of the buoyant clouds were under con- 
sideration and the shape of the cloud was assumed to 
be spherical or toroidal (e.g. [1-3]). Such models 
enable only the gross (integral) parameters of the ther- 
mal (i.e. its height, diameter, mean temperature and 
concentration, velocity of the ascent) to be predicted. 

A more detailed description of the internal structure 
of an ascending thermal was obtained by solving the 
incompressible fluid dynamics equations using the 
Boussinesq approximation to determine spatial dis- 
tributions of velocity, temperature and concentration 
in the buoyant cloud. The analytical solutions were 
obtained for low values of the Rayleigh number in 
refs. [4-6]. A theory of atmospheric turbulent ther- 

mals at high Rayleigh numbers was offered in ref. [7] 
and developed further in refs. [8, 9] where the equa- 
tions of an incompressible fluid were solved using a 
vertical boundary layer assumption. Numerical and 
analytical solutions describing the internal structure 
of a self-similar thermal in the incompressible atmo- 
sphere were offered e.g. in refs. [7-11]. Only the tem- 
perature stratification of the atmosphere was taken 
into account in these works while the atmospheric 
density was considered to be constant. 

The assumption of constant ambient density is valid 
if the compressibility of the medium is small. This is 
normally the case for convection in liquids as well as 
for a 'weak' atmospheric convection when the vertical 
scale of the convective flow is much less than the 
characteristic vertical scale at which the density varies 
significantly with height. Conversely, if the thermal is 
powerful enough it can penetrate high atmospheric 
layers reaching elevations of about 8-10 km. At such 
altitudes the effects of compressibility of the air 
become substantial and the density diminishes notice- 
ably in comparison with its value near the ground. 
Strictly speaking, in this case the flowfield is not self- 
similar, because the length scale associated with ver- 
tical density distribution still exists even after the 
initial conditions are 'forgotten'. Yet, the exper- 
imental data on dynamics of large-scale thermals gives 
a clear evidence that the square-root law still holds in 
this case [12]. 

Though some analytical and numerical calculations 
of the large-scale thermals resulting from powerful 
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NOMENCLATURE 

a auxiliary function in temperature ® 
profile (20) 0 

Cp specific heat of the gas at constant A 
pressure 

g acceleration due to gravity A0 
H length scale of vertical distribution of 

the atmospheric density 2 
J stratification parameter # 
L length scale 
p pressure deviation 
P pressure ~1, ~2 
Q total heat energy 
Q0 initial heat release p 
R gas constant El, 122 
r radial coordinate z 
r0 initial radius of the thermal 
T temperature 
t time ~p 
l D characteristic time relevant to the 

effects of the density stratification f~ 
tl initial stage duration 
tj characteristic time relevant to the 

effects of the temperature stratification 
U velocity scale 
u radial velocity 
v vertical velocity 
z vertical coordinate. 

Greek symbols 
coefficient of isothermal 
compressibility 

B(p, q) beta function 
Bx(p, q) incomplete beta function 
B0 

7 

total initial buoyancy of the thermal 
coefficient of thermal expansion 
ratio of specific heats, Cp/(Cp-  R)  
constant in asymptotic function 
transformed non-dimensional 
coordinate 
point of intersection of the zero 
isoclines ~,, ~2 

temperature scale 
temperature deviation, T -  T. 
auxiliary function in the analytical 
solution (23) 
integration constant in analytical 
solution 
heat conductivity 
dynamic viscosity 
vertical velocity and temperature 
profile in the analytical solution 
zero isoclines of the differential 
equation (21) 
density 
auxiliary integrals 
non-dimensional time, ( t/ to) 1/2 
auxiliary function in the analytical 
solution (23) 
non-dimensional atmospheric density 
stream function 
vorticity. 

Non-dimensional complexes 
Gr Grashof number 
Pr Prandtl number. 

Subscripts 
0 value at the level of the virtual source 
a undisturbed atmosphere 
D value relative to density stratification 
I value relative to the initial stage 
J value relative to temperature 

stratification 
m value at the maximum point 
t top edge of the cloud 

Superscripts 
0 initial value 
^ approximation of ~ by the partially 

linear function for calculation of the 
integral E2 
similarity variable. 

near-ground explosions have been reported recently 
[13-16], a detailed theoretical description of the ther- 
mal in a variable-density atmosphere has yet to be 
developed. A numerical and analytical study of the 
structure of the thermal ascending in a medium with 
variable density is the scope of the current paper. 

2. STATEMENT OF THE PROBLEM 

We consider the evolution of an axisymmetric ther- 
mal formed in the atmosphere as a result of an instan- 
taneous release of a certain amount of heat Q0. We 
suppose that in the undisturbed atmosphere the tem- 
perature Ta varies with height, the pressure P, and the 

density Pa distributions satisfy the hydrostatic equi- 
librium condition and the equation of state. We also 
assume that the heat release occurred in a small region 
whose dimensions are much smaller than the charac- 
teristic height at which the atmospheric density chan- 
ges significantly. This means that the ambient density 
can be considered constant during the initial period 
of the buoyant cloud evolution until it reaches the 
similarity stage. We introduce the virtual source as 
an apparent origin of the rising cloud and use the 
parameters of the atmosphere at this point as reference 
values. 

The evolution of  the axisymmetrical thermal is 
described in the cylindrical coordinate system (r, z) 



Turbulent buoyant thermal 1455 

originated at the virtual source, z axis being directed 
vertically upward and r axis being directed radially. 
We suppose that the deviations of the temperature 0 
and pressure p are small compared to the values of Ta 
and P~, respectively. If so, the gas density p can be 
substituted by the atmospheric density Pa except in 
the term describing the buoyancy force in the vertical 
momentum equation. This term is proportional to the 
difference between :Lhe atmospheric and local density 
and can be related to the pressure and temperature 
deviations by linearising the equation of state 

p(P, T) ~ p,(e~, T~)[1 +~p-/30],  

where ~ = p ~ - i  / 3 = T g  I. (1) 

We consider here only the slow (subsonic) convection, 
hence below we neglect the dynamic compressibility 
effects in comparison with thermal expansion, i.e. we 
assume that [~P[ << /30[ << 1. Since, normally, the tem- 
perature varies with height more slowly than the 
density, we neglect also the variation of the thermal 
expansion coefficient/3 with height and assume that 

/3= To j. 
The main differerLce of this approach from the 'clas- 

sic' Boussinesq apwoximation (see e.g. [2]) is that the 
linearization in equation (1) is performed relative to 
the local values of the undisturbed density, p~(z), 
rather than relative to some particular (fixed) value 
of the density. Thi,; enables the atmospheric density 
variation with height caused by the weight com- 
pressibility of the gas to be taken into account. 

Within the limits and assumptions made above, the 
problem can be reduced to the solution of the fol- 
lowing system of equations 

P2 Our OpaV 
r 0r + ~ = 0 (2) 

OpaU Pa Ou2r 63flaUV ~ -  + -  + - - -  
r ~-r ~z 

-- 0r ~-P~r ~rrr~rr + 0z2] (3) 

OpaV Pa C~uvr 0/)a v2 
(3~- + 7 W #  + ~z 

~p /1 (3 Ov O2v\ 
- az + # ~r Or r ~r + ~z 2) + Oag/30 (4) 

(~Pa 0 Pa OuOr Op,Ov ~--T + -  + - - -  
r ~ (3z 

~ ( !  a C30 6320"~__paVJ 
=c-~ ~ +oz ~] g/3 (5) 

/ d  T~ (d  In p. 

where J is the stratification parameter proportional to 
the difference betwe, en the local temperature gradient 
and the dry adiabatic gradient -g /Cp;  the second 

expression in the right-hand side of equation (6) is 
obtained by using the ideal gas equation of state. It 
can be seen that for a given stratification parameter 
J, the vertical density distribution in the atmosphere 
is characterized by the length scale H = RTo/g so that 

p,(z) = poq~ , (7) 

where P0 is the density of the atmosphere at the virtual 
source level. 

The symmetry boundary condition is posed at the 
axis for each variable (u = 0, ~v/~r = O0/~r = 0), 
while the absence of disturbances is assumed at infinity 
(u = v = 0 = 0). 

Turbulent coefficients of the dynamic viscosity p 
and conductivity 2 are assumed constant. This tur- 
bulence model, though relatively simplistic, enables 
the observed square-root law of ascent of the thermal 
to be obtained in the calculations, not only in the case 
of the incompressible atmosphere (e.g. [8-11]), but 
also for a thermal rising in a variable-density environ- 
ment [13-15]. Also, for constant turbulent transport 
coefficients, an analytical solution can be found, which 
is always an important reason for justifying the sim- 
plifications made. Bearing in mind the analytical as 
well as numerical solution of the problem, we used the 
model which was of the minimum complexity and, at 
the same time provided the dynamics of the thermal 
consistent with that observed experimentally [12]. 

3. GOVERNING PARAMETERS 

We consider the evolution of the thermal after 
release of the heat Q0. To perform the dimensional 
analysis it is convenient to introduce the total initial 
buoyancy of the thermal B0 defined as 

gflQo 
B0 = 2np0Cp" (8) 

The Grashof and Prandtl numbers are expressed as 

Gr = B o Pr = gCp 
(#lpoY 2 " 

We note that the Grashof and Prandtl numbers 
are based here on the turbulent, rather than laminar, 
transport coefficients. The experimentally measured 
turbulent Prandtl number for well-developed tur- 
bulent air flows is of the order and slightly less than 
1, a recent review concerned with this can be found in 
ref. [17]. 

Consider now the time scales relevant to different 
stages of the evolution of the thermal. At the initial 
stage a vortex ring flowfield is being formed and the 
buoyant cloud converts into a shape-preserving con- 
vective element. The duration of the initial stage fi 
was obtained in numerical calculations in ref. [1 8] for 
uniform initial distribution of the temperature over 
the bulk of the hot cloud and in ref. [13] for Gaussian 
initial temperature distribution. The average duration 
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of the initial stage of the evolution turned out to be 
about q ~ (3 - 4)r~/B~/2 where r0 is the initial radius 
of the thermal. At t >> fi the solution no longer 
depends on the initial distributions and the coordinate 
of the cloud top edge increases with time according to 
the square-root law z t ~ l 1/2. 

The effects of the temperature stratification of the 
atmosphere become substantial after a period of about  
tj = [JI ~/2. After this moment  the square-root law 
of ascent no longer holds: if J > 0 (stably stratified 
atmosphere) the thermal decelerates and stabilizes at 
some altitude, otherwise (unstable stratification) it 
accelerates. 

If the thermal rises high enough, after some time tD 
it reaches the elevation at which the ambient density 
Pa differs substantially from that at the level of the 
virtual source P0. This means that for t > tD the den- 
sity variation with height becomes essential and the 
atmosphere can no longer be regarded as uniform. 
The characteristic time to can be introduced as a 
period over which the top edge of the buoyant  cloud 
travels the distance equal to the characteristic vertical 
scale of the atmospheric density variation H (see equa- 
tion (7)). For  the thermal in an incompressible atmo- 
sphere it was shown in refs. [7-9] that during the self- 
similar stage the coordinate of the cloud top edge 
increases with time as 

Z t = G r l / 4 B ~ / 4 t l / 2 .  (9) 

Q = 2 n f ~ -  f o  p C P O r d r d z = c ° n s t = Q ° o o  (11) 

holds in this case. We expect that over the period 
t! << t << tj the solution will coincide with that obtained 
for incompressible atmosphere, but  as t becomes com- 
parable to or greater than tj, the density stratification 
effects will be manifested. 

To analyse the structure of the thermal at the 
square-root stage of the ascent, we introduce the fol- 
lowing length L, velocity U and temperature tO scales 

U ~ Bt/4 
L = B~/4t 1/2 U = L t  J 0 - - -  - -  t 3/2. 

gilt 2 gfl 

(12) 

This choice of the scales practically coincides with 
that employed in ref. [9] and slightly differs from anal- 
ogous formulas used in ref. [11]. 

The main features of the evolution of the thermal 
in a variable-density medium were studied numerically 
for an atmosphere with exponentially decreasing den- 
sity (which is the case for an isothermal environment),  
after that an analytical model was developed and used 
to investigate the thermal for the inverse-square 
decrease of the atmospheric density with height. The 
results are presented below. 

Hence, density variation with height becomes sig- 
nificant after a period of 

H 2 H211 
t D  - -  - -  (10) 

(Gr 'Bo )  I/2 BoPo" 

Of the three time scales discussed, the time tj 
depends only on the atmospheric conditions while the 
scales fi and t o are determined by parameters of the 
thermal. Depending on the energy yield, initial size 
of the thermal and atmospheric conditions, various 
relationships between the time scales are possible, but 
normally tl << tj, to. If the total buoyancy of the cloud 
is relatively small, so that t o >> tj, a density variation 
with height does not  reveal itself during the square- 
root ascent of the self-similar thermal. This particular 
case corresponds to the applicability of the Boussinesq 
approximation. In other words, the solutions obtained 
earlier for an incompressible atmosphere (e.g. refs. 
[6-11]) correspond to the intermediate asymptotics 
t 1 << t ~< t j  <<  t o -  

The current study is focused on another inter- 
mediate asymptotics q << t, to << tj which means that 
we still consider the time interval over which the atmo- 
spheric temperature stratification effects are negli- 
gible, and hence the last term in equation (5) can be 
omitted. Integration of equation (5) over the whole 
space, with allowance for the stated above boundary 
conditions, shows that the conservation of the total 
heat energy of the thermal 

4. NUMERICAL SOLUTION FOR EXPONENTIAL 
ISOTHERMAL ATMOSPHERE 

We consider the ascent of a turbulent thermal in an 
isothermal (Ta = const = To) atmosphere. In this case 
the density distribution is exponential with charac- 
teristic height scale H = RTo/g,  so that 
qg(z) = e x p ( - - z / H ) .  To eliminate the pressure terms 
in the momentum equation we introduce the vorticity 
f~ = Ou/Oz-  Or~Or and take the curl of  the momentum 
equation. Also, we introduce the stream function W 
so that 

c~q' OW 
Or = qovr -- o~  = q~ur" 

We introduce the new variables (denoted by tilde) 
using the scales defined in the equation (12): ~ = r/L,  
g =  z /L ,  a = u/U, g =  v/U, 0 = 0 / 0 ,  ~ = uP/UL 2, 

= ~)L/U. The non-dimensional  time is introduced 
as z = (t/tD)~/2, the vertical density distribution trans- 
forms then to q ) = e x p ( - z G r - ~ / 4 Z ) .  The problem 
reduces finally to solution of the following system of 
equations : 

02W 1 OW 0 1 0 ~  
oe ~ 7 oe + ¢ ~ ¢ -  ~ + ¢ g f i  = o 

1 0q' 1 0q' 
a - ~ = - -  - -  (13) 

qog 02 ~og 0~ 
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aW-+~ ~ a-~ +~ ~0~ ~-~)~+~ 

= Gr- '/~ ~ - ~  - ~ + a e  ~ j 

~q~ 1/~ f 8~ 8gF OFt 
2 aY zff~ ~ j (14) 

(15) 

The boundary conditions on the axis of symmetry 
are • = ~ = OO/Qi'= O, at infinity • = ~ = 0 = 0. 
The integral condition of constant heat energy in the 
thermal (equation (11)) takes the form 

I ~  I0°0 t rd~d~=l ._~  (16) 

Initial distributiens at T = 0 correspond to the self- 
similar thermal rising in the incompressible (uniform- 
density) atmosphere. The set of equations (13)-(16) 
was solved numerically in a rectangular region 
0 ~< ~ ~< 4, - 2  ~< Z ~< 7 on a grid with 50 x 100 nodes, 
the marching along the r variable was performed with 
step At--0 .05.  The distributions of all dependent 
variables at each time step were found by an iterative 
technique based on the line successive overrelaxation 
method [19]. 

To check the infl~Jence of the boundaries the results 
were compared with those obtained in larger regions 
0~<?~<6, - 3 ~ < ~ < 9  and 0 ~ < ~ < 8 ,  - 4 ~ < ~ < 1 4  
but with the same number of grid points. Though the 
increase in size of the domain led to a change in the 
position of the outermost streamlines, the structure 
and position of the thermal itself varied only slightly. 
The difference in the self-similar coordinates of the 
top edge of the cloud was 1% for the medium region 
and 2% for the largest region. The maximum values of 
the excess temperature differed by 2% for the medium 
region and 2.6% for the largest region, whilst the 
differences in the maximum values of the stream func- 
tion were 2.5 and 5%, respectively. This implies that 
the size of the computational domain was large 
enough to eliminate the influence of the boundaries 
on the structure of the thermal. 

We present now the results obtained for Gr = 400, 
Pr = 1. It is shown below that for this value of the 
turbulent Grashof number the self-similar coordinate 
of the cloud top edge coincides with the experimental 
data [12]. 

In Fig. 1 the structure of the thermal is presented 
in the similarity coordinates at z = 0. It corresponds 
to the self-similar thermal in the incompressible atmo- 
sphere. The contours of the non-dimensional excess 
temperature 0 are shown by solid lines for the tem- 

°t . . . . .  t ° 
;:-~!--::.-. "., , 

4 ~. \~\  ~\ \ \  ~ ~ ~ . . . . . . .  

/ I tl I I I I 
3 

~ i i II  I II i I i I 

l i  x / I I  I . . . . . . .  

Fig. 1. Structure of the thermal in the similarity coordinates 
at • = 0. Solid lines--contours of the temperature deviation 
0 (0.1 . . . . .  0.9 of the maximum value 0m = 4.62), dashed 
lines--stream function • (0.1,..., 0.9 of the maximum value 
' ~  = 0.36). Atmospheric density distribution ~o(~ is pre- 

sented on the right. 

perature levels of 0.1, 0.2 . . . . .  0.9 of the maximum 
temperature 0m = 4.62. The stream function contours 
are presented by dashed lines, the maximum value of 
the stream function is ff'm----0.36, the contours are 
also drawn with equal step (i.e. at 0.1, 0.2 . . . .  ,0.9 of 
the maximum value ~m). In the right side of Fig. 1 
the vertical distribution of the ambient density ~0(~) is 
also shown (note that only a part of the computational 
domain is shown, the upper and bottom boundaries 
of the computational domain extend beyond the pic- 
ture). The similarity coordinate of the cloud top 
(defined as a height at which the excess temperature 
at the axis is equal to 0.1 of its maximum value 0m) is 
~t = 4.26, which is close to the experimental value 
(4.3 + 4.4) found in ref. [12]. 

As the time • increases, the thermal advances into 
more and more rarefied layers of the atmosphere. The 
structure of the buoyant cloud at T = 1 is shown in 
Fig. 2 (0m = 4.82, ~m = 0.30, ~t = 4.34) together with 
the vertical distribution of the ambient density ~0(Z). 
In Fig. 3 the same distributions are presented at T -- 2 
(0m = 4.59, ~m = 0.26, Yt = 4.53). At this moment the 
density at the level of the cloud top edge is about 10 
times less than at the virtual source level (the distance 
which the thermal passes over this period is about 
2.5H). 

It can be seen from Figs. 1-3 that the structure of 
the buoyant cloud experiences some changes with 
time; the relative width of the thermal increases while 
the top edge of the cloud becomes less sharp. But the 
important thing is that cloud position in the similarity 
coordinates (namely, the vertical coordinate of its top 
edge) remains practically invariant. To demonstrate 
this, we present in Fig. 4 the time histories of the cloud 
top edge similarity coordinate ~, and of the maximum 
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/ i / / ] I I I 

_ i 

Fig. 2. Structure of the thermal at v = 1. Solid lines--yon- 
tours of the temperature deviation (0m = 4.82), dashed 
lines--stream function (~m = 0.30). On the right the vertical 

distribution of the atmospheric density (o(z') is presented. 

" t - /~(?,) 
0.5 " ~ 

0.0 0.5 1.0 1.5 2.0 
3- 

Fig. 4. Variation of the cloud top edge similarity coordinate 
5t (curve l) and of the maximum excess temperature 0m 
(curve 2) with non-dimensional time ~. Both functions are 
related to their initial values at ~ = 0 (~ = 4.26, 00m = 4.62). 
Dashed line presents the atmospheric density at the level of 

the top edge q)(5t) as a function of time z. 
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Fig. 3. Structure of the thermal at z = 2. Solid lines--con- 
tours of the temperature deviation (0m = 4.59), dashed 
lines--stream function (~m = 0.26). On the right the vertical 

distribution of the atmospheric density ~o(z") is presented. 

excess temperature 0m (curves 1 and 2, respectively), 
related to their initial values at v = 0 ( ~  = 4.26, 
00m = 4.62). The dashed curve denotes the density 
of  the atmosphere at the level of  the cloud top ~p(Zt). 
We can conclude that as the density drops about  an 
order of  magnitude, the position and parameters 
of  the cloud remain almost invariant. This means that 
in physical coordinates the thermal rises according to 
the square-root law zt ~ t 112 and the maximum excess 
temperature drops with time a s  t -3/2. 

5. ANALYTICAL SOLUTION 

For  large Grashofnumbers  and Pr = 1 it is possible 
to find an analytic solution describing the thermal 
rising in the variable-density medium. Following refs. 
[7-9] we use the vertical boundary layer approxi- 
mation and omit the pressure gradient term in the 
equation for the vertical momentum (4). It enables 
us to solve only the equations of  continuity, vertical 
momentum and excess temperature. As before, we 
perform the substitution of  variables as in equation 
(12) and consider the flowfield in similarity coor- 
dinates. The above results of  the numerical modelling 
show that the structure of  the thermal in similarity 
coordinates changes with time quite slowly, so we 
omit the temporal derivatives and seek for a solution 
which depends on ~ only parametrically. After these 
simplifications have been made, the governing equa- 
tions take the form 

0~p~F 0~05F 
0Y + ~ -  = 0 (17) 

+Gr ~,,2 ~ r ~  _{_ 0Z2 j 0 (18) 

u'~°0 M "~001 

f l  0 ~ 0 0  0 2 0 )  
+Gr- ' / 2Pr  ' ~ r ~ + ~ = 0 .  (19) 

We seek the solution of  equations (17)-(19), 
assuming that the profiles of  the vertical velocity • and 
of  the excess temperature 0 are similar and described 
by the function 
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Gr I/4 
t~ = 0 = ~ - e x p  (-- a(-~)Y2)¢(-~), (20) 

where, unlike refs. [7-9], some yet unknown function 
of the vertical coordinate a(~) is introduced into the 
argument of the exponent. Substitution of the profiles 
(20) into equations. (18) and (19) shows that the simi- 
larity is possible fcr Pr = 1 only, this value is used in 
the following. 

Integration of equation (20) gives the stream 
function 

= ~iGr~/4(1 - e x p  ( -a fZ) )4  

after which the horizontal velocity a can be found by 
differentiating the stream function as a = - ( ~ 0 )  -~ 
d~/Of. Upon subatitution of the profiles (20) both 
equations (18) and (19) reduce to a single equation 
for the ~(~) function (the prime denotes the differen- 
tiating with respect to 

Gr '/2(4 exp (-a?Z))"+½(~of{ exp ( -  af2)) ' 

G r  TM . 2 . ,  . =:..t/~o~ ')  
+ ~ a g  u - - e x p t - - a r  ) ) ~ a )  ;" 

It can be seen that if we choose the yet unknown 
function in the horizontal profiles of the vertical vel- 
ocity and of the excess temperature equation (20) as 
a(3) = Grla~p(~,)/4. the second and the third terms in 
the curly brackets become zero, that is why this func- 
tion is used hereatter. We then average the remaining 
coefficients of the above equation by multiplying each 
of them by ?dg and integrating in the range from 
zero to infinity. Also, we introduce a new independent 
variable ~ = Gr-~/~.  As a result we obtain the fol- 
lowing approximate ordinary differential equation for 
the function 4 (prime here denotes the differentiating 
with respect to () 

4(;),, 
Gr \~oJ +(2~¢-42 ) '  = 0, (21) 

where the argument of the function q~ vertical density 
distribution transforms from the physical coordinate 
z to the form q~(z/H) = q~((z). 

The integral condition (11) (or its analogue equa- 
tion (16)) reduces then to the form 

~ C d ~ =  1. (22) 
oo 

A general solution to equation (21), satisfying the 
boundary conditions ~ = 0 at ff = + o% is 

4 exp (-qb(~)) 
~(~) = Gr A0+A(~) ' (23) 

where 

A(~) = I ;  q) exp ( - ~ ( ~ ) )  dff. (24) 

The integration constant A0 in equation (23) 
depends on two parameters--Grashof  number Gr and 
non-dimensional time 3. The value of A0 can be 
obtained by substituting the solution (23) into the 
integral condition (22). 

To analyse the solution (23) at arbitrary atmo- 
spheric density distribution ~o(~z), we integrate it once 
with boundary conditions ~ = 0 at ff = _+ oo and 
obtain 

(25) 

The zero isoclines of this equation are ~ = 0 and 
¢2 = 2~+4Gr-~(~0 l),, we denote the point of their 
intersection as ( , .  We suppose here that the function 
¢(~) has a single maximum point ~ = (m where the 
vertical velocity v and the excess temperature 0 assume 
their maximum values. A sufficient condition for the 
uniqueness of the maximum point is that for ~ < ( ,  the 
isocline ~2 passes below 41 (i.e. 2(+4Gr-l(q~ 1), < 0) 
while for ( >  ~, the function 42 increases mono- 
tonically (i.e. 2+4Gr  l(~p-~),> 0). We note that 
these conditions are satisfied for a wide range of func- 
tions ~o and in particular for the exponential density 
distribution used above, 

The point of maximum (m c a n  be found from the 
condition that the function ~(() intersects the zero 
isocline 4> which means that the expression in the 
brackets in equation (25) turns to zero. Taking into 
account the definition of the function • from equation 
(24), we can recast the maximum condition to the 
form ~o4 = 4Gr-10' ,  or finally 

q~ exp ( - O )  = ~'(A0 + A). (26) 

We expand the function A(() into an asymptotic 
series using the integration by parts 

A(() = f f  q~ exp ( -4 ) )  d( 

- ~ ,  ~0+ ~ + 0  . 

Judging from the analytical solution found in refs. 
[7-9] for the uniform-density atmosphere as well as 
from the results of the numerical modelling presented 
above, we expect that the maximum is reached at 
(m = 0(1), near the maximum point ~ '  = Gr" 0(1) and 
for large Grashof numbers we retain only the first two 
terms of the series omitting the terms of the order of 
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Gr 4 and less. As a result we obtain the maximum 
condition 

(I)' 
e x p ( - ~ ) = - A o ( g o ) , ~ ;  

= (Gr~: go(2(+- 4 (go ') ')3 (27) 

A°\ 4 ] 2 + 4_r (go- l),, " 

6. THERMAL IN THE ATMOSPHERE WITH 
INVERSE-SQUARE DENSITY DECREASE 

The integration equation (22) necessary to calculate 
the constant A0 in equation (23) can be performed 
analytically only in the simplest case when the density 
of the atmosphere is uniform (go = 1), a corresponding 
solution was offered and studied in detail in refs. [7- 
9]. It has been shown that the function ( increases 
with height, reaching its maximum at a point with 
coordinate (in our notation) 

,n<) - -  ( 2 8 )  

after which it decreases sharply, so that the function 
can be approximated by a partially continuous func- 

tion ~ = 2 ( fo r  0 ~< (~< 1,~ = 0 f o r ( < 0 a n d ( >  1. 
For  arbitrary density distribution go it is impossible 

to calculate the integral equation (22) and to obtain 
explicit relationships describing the thermal. Below a 
particular case of the density distribution is studied 
in which approximate final formulas can be derived. 
Namely, the inverse-square diminution of the atmo- 
spheric density with height is considered 

1 

go - 1 + (zO 2" (29) 

This function satisfies the conditions considered 
above under which the vertical profile ~(() has a single 
maximum. This distribution can be regarded as a 
model describing at ( ~> 0 the density decrease with 
height. 

Consider first the solution to equation (21) obtained 
numerically. In the right part of Fig. 5 the integral 
curves are presented at z = 0.0, 1.0, 2.0, 3.0, 4.0, in 
the left part corresponding atmospheric density dis- 
tributions go(~) are presented. It should be noted that 
the solution at ~ = 0 relates to the thermal rising in a 
uniform-density atmosphere. An analysis of Fig. 5 
shows that as the thermal penetrates the rarefied atmo- 
spheric layers, the similarity coordinate of its top 
remains almost invariant (curves corresponding to 
different ~ intersect at the same point). The point 
of maximum of the function ~(0 slightly displaces 
downwards with time, while the horizontal size of the 
thermal increases proportional to go((m) - m  and the 

1 . 5  . . . . . .  , , 1 . 5  l / 
1.0 "r = 0.0 ~ r = 0.0 t 

o 

¢ 

3.0 
4.0 00 0t00 

-0"50 1 ' ' i 2 -0.5 
~(¢) ;(¢) 

Fig. 5. Variation of the structure of the thermal rising in the 
atmosphere with density distributed with height according 
to the inverse-square law. The profiles presented correspond 
to the moments z = 0.0, 1.0, 2.0, 3.0, 4.0. In the left part the 

density distributions at the same moments are shown. 

radius of the thermal in the similarity coordinates 
increases with time. These results are in a good agree- 
ment with those obtained in numerical integration of 
the complete set of equations performed above. 

Consider now the results which can be obtained 
analytically. After substituting the density dis- 
tribution (29) into equation (24) we explicitly obtain 
the auxiliary functions (I) and A 

~ ( 0  = (1 + 4~2) In (1 + ((r)2) 

A(O = [oo d(  _ 
£ Gr 

(1 +(¢T):):+~ 

f 1 /1 3 Gr\  +47 ) 
1B(1 3 Gr\ 1 / 1  3 Gr) ~+ ~<0, 

where B is the beta function and Bx is the incomplete 
beta function [20, 21] the argument of which is the 
value of the function ~0(~) = 1/(1 + ((v)2). 

To find the constant A0 we represent the integral in 
equation (22) as a sum of two terms Z~ and Z2 

+f-~o ( 1 -  go)~d( = Z, +Y'2. 

The first of the two auxiliary integrals can be cal- 
culated exactly and expressed in terms of the beta 
function B 
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4 ( A ( -  ov)'~ 
Z l = ~ r r l n  1+ A0 ] 

1 1 3 
= G r  In + 4~2))" 

To calculate the integral Z2 we replace the function 
~ in the integrand by an approximating function ~(0. 
We seek the asymptotics of the solution ~(() at ~ < ~m 

using the pilot function ~ ( ( ) =  2~(l+az2), where e 
is an unknown as yet constant. Substitution of this 
function into equation (25) shows that its left and 
right-hand sides are equal asymptotically if e = 6/Gr. 
We approximate tile function ~(0 by a discontinuous 
partially linear function 

~(() = {2!i(10 e'f2) ( < 0 0  ~ ( ( > ~ m ,  ~ (m (30) 

where the coordinate of the maximum point 
(m = (l+ez2) -1/2 iS determined from the integral 
relationship (22). The second auxiliary integral Zz is 
then equal to 

E: ~ f l  TM -1 +(zff)~(z(): ~(~) d~ 

= 1 (l +8Z2) " f" Z2 ) 
,n~ , - t  ( l ~ z : )  " 

Substitution of the above values for El and Z: into 
the integral condition (22) gives the following result 
for the constant Ac 

A0 ,~B ~ , 2 +  T - I ( I + T  2) ( 4~* 2 -- 2 . 

We then substitute this value of A0 into the 
maximum condition (27) to find the coordinate of the 
maximum point (,.. It is convenient to present the 
maximum point a s  '~m = (0m - -  A(m where (0m is the coor- 
dinate of the maximum point at z = 0 (i.e. in the case 
of a uniform-density atmosphere, see (28)) and m~m is 
its variation with time r. Calculations give the fol- 
lowing dependence 

A~m = ~rr 1 n z :  xGr34 Gr3 (1 +z : )  In (1 +z2). (31) 

The function A!~m('C ) is presented in Fig. 6 by a 
solid curve together with the points obtained from 
numerical solution of equation (21). It can be seen 
that the approximate analytical solution gives the 
accuracy of prediction of the maximum point coor- 
dinate not worse than 25-30%. Even better accuracy 
can be achieved if when approximating the function 
~(0 in equation (30) we choose an appropriate slope 
of the linear function, i.e. the value of e. The best fit 
was obtained for ~: ~ 8.8/Gr, the corresponding de- 
pendence of the maximum point coordinate 

A~m=~rrl  n z :  7~Gr34 4"4(l+z2)ln(l+Z2)Gr (32) 

0 .4  , , ,  . . . . . .  ! . . . . . . . . .  , . . . . . . . . .  I . . . . . . . .  , 

o numerical  / 1  

0.3 - equation (31) / ~  

equation (32) / 

0.1 

0.0 

T 

Fig. 6. Variation of the maximum point coordinate A~m 
with time ~. Points correspond to the numerical solution of 
equation (21), solid line represents the analytical solution 

(31), dashed line shows the solution (32). 

differs from solution (31) only in the value of the 
factor in the second term. This solution presented in 
Fig. 6 by a dashed line fits the numerical results within 
the accuracy of 5%. 

Thus, the numerical and analytical study presented 
in this paper shows that a thermal rising in an environ- 
ment with altitude-dependent density has a quasi- 
shape-preserving structure. Density diminution with 
height causes some additional smearing of the top 
edge of the rising cloud and increase in the thermal 
radius. However, the main features of the self-similar 
thermal which are valid for an incompressible atmo- 
sphere-ascent law zt ~ I 1/2 and the temperature decay 
as t 3/2 still hold even as the ambient density at the 
level of the cloud top diminishes an order of mag- 
nitude compared to the density at the level where the 
initial heat release occurred. 
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